Surface currents in the Mercator Océan global and regional systems: validation against observations, use for application and feasible improvements.

OUTLINE

- Mercator operational systems
- Overview of calibration and validation
- Use of current estimates and forecasts: some relevant applications
- Improving operational current estimates using bias correction

Systems

MERCATOR systems

Based on the NEMO ocean modeling platform and the SAM2 data assimilation system (Variables assimilated: SLA, SST, in-situ T/S profiles). Biogeochemical model based on PISCES

Atmospheric forcing: **ECMWF**

Operational systems

- ¼° global model (PSY3)
- 1/12° Atlantic model (PSY2)
- 1/12° global model (PSY4)
- 1/36° North East Atlantic model (IBI36, tides, no assim., also operated by Puertos del Estado for MyOcean)
- 1° global biogeochemical coupled system (BIOMER1V1)
- 2° and 1° global model (PSY2G, for climatic applications)

Other systems

- 1/4° global model for reanalyses (GLORYS, 1992-2009) (DRAKKAR)
- 1/12° and 1/36° Mediterranean models (MED12, MED36)

Mercator Océan and the operational oceanography framework

- Mercator operational systems contribute to the Global and IBI component of MyOcean and the Marine Core Service
- Mercator operational systems have a high degree of integration in the MyOcean System
- Mercator Océan is contributing to GODAE Ocean View, a framework for discussing/planing actions concerning the global ocean observing system, operational systems intercomparison, R&D activities etc....

VALIDATION

Near-real time validation of currents (1/2)

Comparisons to:

- CORIOLIS Drifters
 (GTS drifters → Météo-France (CMM) → CORIOLIS)
- surface currents deduced from altimetry and wind (SURCOUF, CLS)

Limitations

- Limited number of drifters, drogue loss problem (despite control), what do really measure the drifters (slip, windage, current depth)?
- SURCOUF is not an independent product because of assimilation of SLA in model, estimates are not provided in coastal areas, and less accurate close to the equator

Near-real time validation of currents (2/2)

Weekly validation

Drifters/SURCOUF surf. Zonal vel.

Drifters/model surf. Zonal vel.

Drifters/model surf. Zonal vel.

SURCOUF/model surf. Zonal vel.

Quarterly validation: eg, AMJ 2011 mean bias

Mean bias of Surf. zonal velocity (drifters – model)

Comparisons to AOML drifters climatology

Delayed time validation of currents

Comparisons to:

- Current-meters from fixed stations
- ADCP
- HF radar
- Other products ...

M2 amplitude in Iroise Sea Tidal ellipses and difference (SHOM HF radar and model)

M2 tidal ellipses (in-situ measurements and models)

IBI36 / PSY2v3 / PSY2v4 / ESEOAT

Residual velocities at Estaca de Bares buoy (in-situ and models)

APPLICATIONS

Drift applications

- Background ocean currents for Météo-France drift modelling operational applications with MOTHY
 - E.g.: assistance for refining reverse drift computations in the case of AF447 wreckage (need for assimilation of reliable velocity observations)
- Estimation of the dispersion of large pollutions at ocean basins scale (ariane tool)
 - E.g.: estimate of Fukushima effluents dispersion (ARIANE tool)

Use of MERCATOR surface currents in the ECMWF forecasting system (J. Bidlot, ECMWF)

Impact study of using MERCATOR surface currents in the ECMWF forecasting system

=> Surface currents
can have a beneficial impact
of the quality of ocean wave
analysis and forecasts.

BIAS CORRECTION

Bias correction based on assimilation approach (E. Greiner, CLS) (1/2)

 Objective: set up a method to correct large scale bias of velocity fields in analysis and forecasts ocean systems.

Method

- Apply a quality control on the observations (drifters, corrected by M.H. Rio, CLS)
 - Correction of the slip (0.07% of the wind speed)
 - Correction of the windage (up to 3% of the wind speed in the case of drogue loss)
 - Estimation of the error
- Variational analysis
 - Use 48h averaged model currents at 15m depth
- Not yet applied to forecasting systems

Assimilation of velocity: bias correction (E. Greiner, CLS) (2/2)

Ex: in the Medit. Sea

 Circulation strengthened in the south of Crete, inversed in the north of Egypt

SUMMARY

SUMMARY

- Operational oceanography supports upper ocean applications and provide ocean current for different users:
 - Security: oil spill, contaminations, accidents
 - Shipping, entertaining/sport activities
 - Others... climate, defence...
- Mercator Ocean provides daily estimates and forecasts of 3D ocean currents, at different scales: global eddy-permitting to regional submesoscale, including tidal and high frequency upper ocean dynamics.
- Available ocean current observations (derived from satellite altimetry, and drifting buoys) are used in near-real time to validate the operational products.
- In R&D and delayed cal/val mode, a larger set of ocean currents observations is used (ADCP, mooring data, HF radar, deep currents from floats etc....)
- Mercator Ocean is implementing assimilation-based techniques to improve current estimates, using available observations, and trying to limit the impact of their errors.
- Every new observations dataset provided in real-time will be highly considered for operational oceanography. We need:
 - RT delivery operational (daily)
- Quality control, error < 5 cm/s

 Mercator

 Ocean

 Adapted to forecasting space scale