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Focus of this meeting:

The needs for ocean surface current measurements from space

Ocean circulation model simulations

- are a mean to obtain ocean currents at global scale
ocean analysis, forecast/hindcast, reanalysis

- need accurate surface current estimates for validation

Objective of this talk:

Discuss model simulations of the “ocean weather” or “synoptic scale
circulation” (i.e. the large scale circulation and its associated mesoscale
“eddy” field)
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Ubiquity of
“mesoscale circulation features”
In the ocean
from

satellite observations
and
model simulations




(M. Juza)

Sea level anomalies from T/P+ERS
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Ubiquity of eddies in the ocean from satellite observations.




“Mesoscale” is more than just “eddies”

Persistent Boundary Currents

Waves have similar time and space scales of variability
Persistent Fronts

SSH in Drakkar 4° ORCA025 model simulation
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Eddies, fronts and
meanders in ...

... all great current systems:
Gulf Stream

Kurosiho,

Brazil Current,

EastAustralian Current,

Leewin Current, ...
and
ACC

Ubiquity of eddies in the ocean from satellite observations.



“Mesoscale” is more than just “eddies”

Persistent Boundary Currents
Waves have similar time and space scales of variability
Persistent Fronts

... equatorial waves (TIW)

SST
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Ubiquity of eddies in the ocean from satellite observations.



To conclude :

Mesoscale variability is ubiquitous in all oceans and at all
latitudes

It consists in very energetic features such as eddies,
waves, meandering of strong currents and fronts

T/P+ERS Aviso product: SLA on 19 May 2004

Mesoscale (from observations):

Length scale (L = Rd) :
from a few 10km
to a few 100km

Time scale :
few weeks

to few months




Dynamical properties of the
“ocean mesoscale”

“Ocean Weather”

“Ocean Synoptic Circulation Features”




Properties of the ocean mesoscale

SSH Variability (rms) estimated from 15 years of satellite altimetry (CLS).

Mesoscale variability
IS concentrated in the
vicinity of the great
ocean currents.

Mesoscale eddies are generated by the instability of the large scale flows:
« Baroclinic instability (vertical shear) which is ubiquitous in the ocean (1st baroclinic mode)
 Barotropic instability (hz shear) in strong currents.

Mesoscale eddies are strongly coupled to the general circulation,

weakly coupled to surface forcing, inertia gravity waves, tides.

Characteristic scales of the mesoscale variability are those of these instabilities




Properties of the ocean mesoscale

Ocean Mesoscale variability are often described as ...

... the "weather system" (or synoptic circulation) of the global ocean

by a dynamical analogy with the synoptic variability in the Atmosphere.

Dynamical properties of Ocean Mesoscale (Atmopheric Synoptic) Eddies
McWilliams, 2008

 Quasi-geostrophic equilibrium Rossby Nb i v <<1

« Characteristic velocitiy small
compared to the celerity of internal Froude Nb
gravity waves

» They are generated by instabilities
of the large scale flow, and such,
are equally influenced by
stratification (vertical shear) and
rotation

N = Brunt-Vaisala frequenc
NH A quency
Characteristic length scales: L=—+- H = thermocline depth

f

H = troposphere height




Properties of the ocean mesoscale

Eddy Length scale : |8 _NH at mid-latitude (=10 s™)

J

Atmosphere Ocean
N=102s! N=5x107 s and
H=10* m H=10% m

Lam=1000 km [ oce=50 km

The eddy Length scale is therefore 20 times smaller in
the ocean than in the atmosphere




Properties of the ocean mesoscale

Meridional Heat Transport (MHT) at mid latitudes

1998181 :23:30

Atmosphere: Ocean:

The totality of the MHT is done the A large part of the MHT is done by
synoptic transient features poleward Mean Currents flowing
along continents
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Meridional Heat Transport (MHT) at mid latitudes roperties of the ocean mesoscale
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Atmosphere:

The difference in the eddy scale is so large that the analogy with atmospheric

synoptic scale does not simply hold in terms of “impact on the general
circulation”.

Except may be in the ACC where eddies are suspected to play a peculiar role?




Ocean model fundamentals

resolved and unresolved scales
of motion




Resolved/unresolved scales of motion

The Primitive Equations ... (written in a more generic forms as in Treguier, 2008)

Y =(u,T,S) State vector

F(Y) includes all other terms of the PEs, including
coriolis force, pressure gradient, external forcing, ...

... are solved numerically

PEs are discretized

- on a mesh of grid points

- using finite difference formulas

Solving the PEs is applying a
“numeric resolution operator (-)g”
to the state vector Y




Resolved/unresolved scales of motion

Evolution aof the resolved Effects of the unresolved scaled
state of the ocean must be accounted for

[Umerical errors Parameterisation errors

For Ocean Currents




Resolved/unresolved scales of motion

For Ocean Currents

ot 0, 0x

Fine grid Eddy-Resolving models Coarse grid ocean models
(ocean weather) (ocean climate)

Larger current velocities Smaller current velocities
Sharper velocity gradients Smoother velocity gradients
This term will be large This term will be small
Greater sensitivity to numerical Lower sensitivity to numerical

scheme schemes

This term will be “smaller” This term will be important
Lower sensitivity to the ' Greater sensitivity to the
parameterisation used parameterisation used




Sensitivity to the numerics In the
Agulhas RingS (Barnier et al., Oc. Dyn., 2006) momentum advection scheme
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Sensitivity to the numerics In the
Agulhas RingS (Barnier et al., Oc. Dyn., 2006) momentum advection scheme

DRAKKAR 1/4 EEN+PS Surface

Eddy Kinetic Energy

POP 1/10 DARKKAR 1/4 ENS+FS

The EEN scheme was found to reduce the noise in vertical velocity field
near the bottom cells. (Le Sommer et al., Oc. Mod. 2009)




DRAKKAR hierarchy of global
ocean circulation models

Dk
LEGI — Grenoble LPO — Brest LOCEAN - Paris MERCATOR-Ocean — Toulouse

GEOMAR - Kiel NOC — Southampton U. Reading — Reading U. Alberta — Canada
(DFO — Canada, UKMO, KNMI, SIO, ...)

Scientific and technical coordination the purpose of which is to

- implement high-resolution global ocean/sea-ice model
configurations based on the NEMO OGCM and the tri-polar ORCA
grid

- design, realize, assess and distribute eddy resolving numerical
simulations




Resolutions of 2°, 1°, 1/2°, 1/4°,1/12°

Rossby Raodius : Observation (Chelton et al., 1998)
Model Grid Width: CORCAOS AGO1 ORCA1Z

Zonal Minimum Zonal Mean — — Zonal Maximum
I I I I I I I [ I I I I
40°S 20°s 20°N 40°N B0°N 80°MN
LATITUDE

Internal Rossb Radius of Deformation (Chelton, 1998

ORCA12: 1/12°resolution DRAKKAR configuration is
the closest to eddy-resolving
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Sea Level Anomaly on 19 May 2005

Model outputs are co-localized with the AVISO
product

ORCA12




ORCA12

The community 1/12° DRAKKAR
model configuration based on

the NEMO OGCM




ORCA12: the grid

Nb of grid points : 4326x3061
Nb of vertical levels : 46, 50 or 75
Time step : 360 sec.

Model grid size in km




ORCA12: the cost

1 year Nb Elapsed
simulation of Procs Time cost

Storage

Restart 5days
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ORCA12: the surface currents Markus Scheinert (GEOMAR)




ORCA12 ™
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ORCA1 2: how model surface currents compare to observations?

Lack of ocean surface currents for
validation

Validation is difficult because of :

- the nature of available observations
Drifter velocities
Local current meter mooring
Ship ADCPs

- the turbulent nature of the flow




ORCA1 2: how model surface currents compare to observations?

Zonal velocity of obs U drifs in 2011 OND

Lack of ocean surface currents for
validation

Validation is difficult because of :

- the nature of available observations
Drifter velocities
Local current meter mooring
Ship ADCPs

- the turbulent nature of the flow

Zonal velocity of model PSY4V1R3 U drifts in 2011 OND

We compare ORCA12 analyses
performed at MERCATOR with
AOML currents derived from
surface drifter trajectories.

(QuoVadis, M. Drevillon, Feb 2012)




ORCA12 sensitivity to the
parameter space




ORCA12 sensitivity to the
parameter space

- Lateral friction at the wall
- Momentum advection scheme

- Surface forcing (absolute versus relative wind)




NTILER Lateral friction at the wall

Effect on mean currents - (mean SSH)

H 1998-2007

ORCA12 - partial S|ip B.C. x | —— i i et s ORCAQ083-NO1 r

ORCA12 - free slip B.C.
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Lateral friction at the wall
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Effect on eddy kinetic energy
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Lateral friction at the wall

Isotherm 17Deg at 180m (LONG RUNS)

ERNA.L64-BCTGSP2 90-05 (177.28)
ORCA025.L75-MJM95 00-09 (180.55)

ORCA12.L46-MALS5 83-92 (191.093)
ARGO 04-10 (191.093 m)
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Effect on
Gulf Stream
separation




Lateral friction at the wall

Free slip Variable slip

EKE at 540m y2004

Local effect
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TOPEX EKE
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Momentum advection scheme

Effect on eddy kinetic energy
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EKE (cm?2/s2) TOPEX

Momentum advection scheme

Effect on eddy kinetic energy

ORCA1Z.L46—-MALS95 EKE 1998-2007 D3.05
» B . .

1 JRCA12 L46-MALB5 EKE 1983-1992 D3.05

ORCA12 — FLX scheme.

1350 15(

1000



NILER mSs Momentum advection scheme

Effect on mean currents - (mean SSH)

Observation (T/P)

ORCA12 — EEN scheme

ORCA12 — FLX scheme.




Wind forcing
Absolute wind vs Relative wind
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ORCA1Z2.L46—MALSD — ORCA1Z2_LIM-T321 2003-2007 EKE

Wind forcing
Absolute wind vs Relative wind
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CONCLUSION

Although we know and understand a lot on ocean mesoscale features,
modelling the ocean circulation at synoptic scales is just at its beginning

Sensitivity to model parameters is poorly known at those high resolutions,
and its exploration will be very costly (Drakkar objective), but model cost (cpu
and storage) is already very high...

Resolution of 1/12° still not high enough, and ocean currents are still
generally underestimated.

There is a need to improve the sampling of the synoptic scales of motion
(Jason and ARGO do not do it adequately). Wide Swath Altimeter?

Lack of “adequate” ocean current observations for validation of highly
turbulent models (drifters, local moorings, ...).

Observational network is not dense enough to constrain surface currents
(which still present significant biases in the analysis).




