

Ocean Currents at the Met Office

Ed Blockley

ESA GlobCurrent UCM, 7th March 2012

Contents

This presentation covers the following areas

- Introduction to Met Office Ocean Forecasting systems:
 - The FOAM deep ocean system
 - The FOAM shelf seas system
- Wave modelling systems
- Validation of FOAM current forecasts
- FOAM current requirements

FOAM: Forecast Ocean Assimilation Model

A brief introduction

Forecasting Ocean Assimilation Model (FOAM)

- Daily analyses and forecasts out to 7 days
- Data assimilation using a multi-scale Analysis Correction scheme
- Velocity fields provided operationally to a number of users including:
 - Naval operations
 - Shipping
 - Offshore commercial
 - Search & rescue/safety at sea
 - Oil spill monitoring
- Provides lateral boundary conditions to ocean forecasting models run at external organisations
- Will provide currents for Met Office Wavewatch III wave forecasts (in the near future)

FOAM System overview

 48-hour observation window allows us to include much more data into the FOAM system

FOAM Data assimilation

Temperature and salinity profiles (Argo floats, XBTs, CDTs, buoys,...)

Sea-ice concentration (OSI-SAF)

Satellite and in-situ SST (AATSR, AVHRR, AMSRE, METOP)

Satellite Altimeter SSH (Jason 1, Jason 2, ENVISAT)

FOAM Deep Ocean Configurations

1/4° Global (orca025)

Provides lateral boundary conditions for the regional models

1/12° North Atlantic

1/12° Mediterranean

1/12° Indian Ocean

FOAM Deep Ocean Models

- NEMO ocean model (with a linear free surface) coupled to LIM2 sea-ice model
- 50 constant depth vertical levels (z-levels)
- Surface forcing using 3-hourly NWP fluxes
- Assimilation of satellite and in-situ observations of temperature, salinity, SSH and sea-ice concentration
- Provides lateral boundary conditions for the UK shelf seas models as well as other external organisations
- Producing the following current products:
 - Daily mean 3D currents (1/4º and 1/12º models)
 - 12-hourly instantaneous 3D currents (1/4º and 1/12º models)
 - 3-hourly instantaneous surface currents (1/4º model)

FOAM Shelf Seas Configurations

4km Arabian Gulf Model

FOAM Shelf Seas Models

- NEMO ocean model with a non-linear free surface
- 33 terrain following vertical levels (hybrid sigma-s levels)
- Tidal harmonics with 15 constituents
- Surface forcing using a combination of 3-hourly and hourly NWP fluxes
- Assimilation of satellite and in-situ Sea Surface Temperature (SST) observations
- 6-hourly boundary inputs from the deep ocean 1/12° regional models
- Producing the following current products:
 - 25-hourly mean 3D currents
 - hourly instantaneous 2D currents (surface, middle, bottom levels)

Met Office Wave Modelling Systems

- Global model ~35km resolution
- North Atlantic European (NAE) model ~12km resolution
- Persian Gulf model ~18km resolution

Wave Modelling Systems

- Global model
 - 30km horizontal resolution
 - Runs twice daily, out to 5 days with 3-hourly outputs
- North Atlantic European model
 - 12km horizontal resolution
 - Four times daily, out to 36 hours at hourly resolution
 - Twice daily, out to 5 days at 3-hourly resolution
- Future regional models will be 4-8km resolution and will use FOAM surface currents

Validating FOAM current forecasts

- Recent validation of FOAM current forecasts has been performed using the following data sources:
 - Velocities derived from the positions of Global Drifter Program Lagrangian drifting buoys
 - Velocities observed by the Global Tropical Moored Buoy Array (TAO/TRITON, PIRATA, RAMA)
 - Surface and subsurface moorings aboard off-shore drilling platforms
- Mean errors (biases), Root-Mean-Square (RMS) errors and correlation coefficients are briefly presented here

Drifting buoy statistics: Zonal velocity

	mean	RMSE	correlation	norm. s.d.	obs/day
Global	-0.004	0.21	0.57	0.70	653
North Atlantic	-0.003	0.21	0.49	0.68	179
Tropical Atlantic	-0.004	0.21	0.60	0.80	40
South Atlantic	0.009	0.22	0.48	0.68	99
North Pacific	-0.022	0.21	0.66	0.72	139
Tropical Pacific	-0.051	0.21	0.70	0.81	91
South Pacific	0.000	0.20	0.56	0.64	135
Indian Ocean	-0.021	0.23	0.62	0.77	79
Southern Ocean	0.064	0.24	0.35	0.68	130

Drifting buoy statistics: Meridional velocity

	mean	RMSE	correlation	norm. s.d.	obs/day
Global	0.001	0.19	0.45	0.67	653
North Atlantic	0.002	0.19	0.43	0.64	179
Tropical Atlantic	0.006	0.16	0.51	0.80	40
South Atlantic	-0.001	0.20	0.34	0.66	99
North Pacific	-0.009	0.19	0.55	0.69	139
Tropical Pacific	-0.004	0.17	0.55	0.80	91
South Pacific	0.006	0.17	0.40	0.63	135
Indian Ocean	0.013	0.21	0.55	0.74	79
Southern Ocean	-0.007	0.22	0.31	0.66	130

Moored buoy statistics in the tropics

	mean	RMSE	correlation			
Zonal Velocity						
10S – 10N	0.13	0.30	0.78			
2S – 2N	0.22	0.37	0.77			
Meridional Velocity						
10S – 10N	-0.004	0.19	0.55			
2S – 2N	0.006	0.20	0.56			

Met Office current requirements

For FOAM validation and/or assimilation purposes

FOAM current requirements

- Global/deep ocean models
 - 1-hourly (or 3-hourly) temporal resolution
 - At most 1/4º horizontal resolution
 - Uncertainty/error <0.1m/s (0.2m/s useful)
- Global climate models
 - Daily-mean temporal resolution (although monthly or seasonal means possibly of use)
 - 1/4º horizontal resolution (although 1º possibly useful)
- Shelf Seas/tidal models
 - 30 minute temporal resolution
 - 1.5km horizontal resolution
 - Uncertainty/error <0.1m/s

Wave model requirements

- Global wave model
 - 3-hourly temporal resolution
 - 20km horizontal resolution
 - Uncertainty/error <0.25m/s*
- Regional wave models
 - 30 minute temporal resolution
 - 2km horizontal resolution
 - Uncertainty/error <0.25m/s*
- Coastal wave models
 - 15 minute temporal resolution
 - Horizontal resolution 1km (max) down to 10m
- *location of features/fronts more important for wave modelling than site-specific accuracy

FOAM Deep Ocean Models

- In Autumn FOAM changes to use the following:
 - bulk formulae surface boundary conditions with a mixture fo 3-hourly and hourly inputs
 - the CICE sea-ice model
 - NEMOVAR variational data assimilation scheme
 - 75 depth levels

Tropical comparisons

Moored Buoys

Drifting Buoys

